Two-dimensional Talbot self-imaging via Electromagnetically induced lattice
نویسندگان
چکیده
We propose a lensless optical method for imaging two-dimensional ultra-cold atoms (or molecules) in which the image can be non-locally observed by coincidence recording of entangled photon pairs. In particular, we focus on the transverse and longitudinal resolutions of images under various scanning methods. In addition, the role of the induced nonmaterial lattice on the image contrast is investigated. Our work shows a non-destructive and lensless way to image ultra-cold atoms or molecules that can be further used for two-dimensional atomic super-resolution optical testing and sub-wavelength lithography.
منابع مشابه
The Effect of Antenna Movement and Material Properties on Electromagnetically Induced Transparency in a Two-Dimensional Metamaterials
Increasing development of nano-technology in optics and photonics by using modern methods of light control in waveguide devices and requiring miniaturization and electromagnetic devices such as antennas, transmission and storage as well as improvement in the electromagnetic tool, have led researchers to use the phenomenon of electromagnetically induced transparency (EIT) and similar phenomena i...
متن کاملDiscrete Talbot effect in two-dimensional waveguide arrays.
We theoretically study discrete Talbot self-imaging in hexagonal, square, and irregular two-dimensional waveguide arrays. Different from its counterpart in a continuous system, the periods of the input fields must belong to {1, 2, 3, 4, 6} for Talbot self-imaging. Also, the combinations of the input periods cannot be 3 & 4, or 4 & 6 along two different directions, which distinguishes itself fro...
متن کاملControlling of Absorption and Dispersion Spectrum via Electromagnetically Induced Transparency
In this paper we examine the absorption and dispersion properties of a weak probe field via Electromagnetically Induced Transparency (EIT) in a four-level system. It is shown that under certain condition, using this model, the absorption cancellation is appeared and the medium becomes transparent to the weak probe field. It will be shown that the controlling of absorption and dispersion spectru...
متن کاملInvestigation on the plasmon Talbot effect of finite-sized periodic arrays of metallic nanoapertures
We present an in-depth and systematical investigation on the plasmon Talbot effect of finite-sized two-dimensional (2D) periodic metallic nanoaperture arrays. The nanoaperture shapes, fill factor, lattice distribution, array size, film thickness, material property and polarization state of the incident light are considered, and the inherent influencing rules are summarized via the three-dimensi...
متن کاملAnalytical expression for phase distribution of a hexagonal array at fractional Talbot planes.
We describe a reciprocal-lattice vector method for analysis of the diffractive self-imaging (or Talbot effect) of a two-dimensional periodic object. Using this method we analyze the fractional Talbot effect of a hexagonal array and deduce a simple analytical expression for calculation of the complex amplitude distribution at any fractional Talbot plane. Based on this new formula, we design a he...
متن کامل